OBJECTIVE MATHEMATICS Volume 1 Descriptive Test Series

CHAPTER-8 : BINOMIAL THEOREM

UNIT TEST-1

1. In the expansion of $(x+a)^{n}$ if the sum of odd terms be P and sum of even terms be Q, then
(a) $P^{2}-Q^{2}=\left(x^{2}-a^{2}\right)^{n}$
(b) $4 P Q=(x+a)^{2 n}-(x-a)^{2 n}$
2. Let $\left(\frac{2 x^{2}+x+2}{x}\right)^{n}=\sum_{r=m}^{r=t} a_{r} x^{r}$,
then answer the following.
(a) The values of m and t are \ldots
(b) The value of $\sum_{r=m}^{r=t} a_{r}=\ldots$
(c) The value of $a_{t}=\ldots$
(d) The value of $a_{m}=\ldots$
(e) If $a_{p}=a_{q}$, then $p+q=$

$$
E=\left[1+2\left(x+\frac{1}{x}\right)\right]^{n}=\sum_{r=m}^{r=t} a_{r} x^{r}
$$

where $r=(m, m+1, \ldots, t)$
$E=C_{0}+C_{1.2}\left(x+\frac{1}{x}\right)+C_{2}\left[2\left(x+\frac{1}{x}\right)\right]^{2}+$
$+C_{n}\left[2\left(x+\frac{1}{x}\right)\right]^{n}=\sum_{r=m}^{t} a_{r} x^{r}$
3. If $(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{n} x^{n}$, then the sum of the products of the $C^{s}{ }_{i}$ taken two at a time represented by $\sum \sum C_{i} C_{j}$ is equal to $0 \leq i$ $\leq j \leq n$.
$2^{2 n-1}-\frac{(2 n)!}{2 .(n!)^{2}}$.
4. $C_{0}^{2}-C_{1}^{2}+C_{2}^{2}-\ldots+(-1)^{n}\left(C_{n}\right)^{2}=0$
or $(-1)^{n / 2} \frac{n!}{(n / 2)!(n / 2)!}$
according as n is odd or even.
5. If the maximum value of the term independent of $\left(\frac{1}{1-x}\right)\left(\frac{1}{3-x}\right)$ is :
6. If C_{r} stands for ${ }^{n} C_{r}$, find the sum of the series $\frac{2(n / 2)!(n / 2)!}{n!}\left[C_{0}^{2}-2 C_{1}^{2}+3 C_{2}^{2}-\ldots+(-1)^{n}(n+1) C_{n}^{2}\right.$
where n is an even positive integer, is :
7. If the maximum value of the term independent of t in the expansion of $\left(t^{2} x^{\frac{1}{5}}+\frac{(1-x)^{\frac{1}{10}}}{t}\right), x \geq 0$ is k, then k is equal to \qquad

Hints and Solutions

1. (True)

$$
P+Q=(x+a)^{n}
$$

$\therefore \quad(P-Q)=(x-a)^{n}$
$\therefore \quad P^{2}-Q^{2}=\left(x^{2}-a^{2}\right)^{n}$

$$
\begin{aligned}
4 P Q & =(P+Q)^{2}-(P-Q)^{2} \\
& =(x+a)^{2 n}-(x-a)^{2 n}
\end{aligned}
$$

2. (a) Clearly $m=-n, t=n$ as the highest power of x will be n and lowest will be $-n$.
(b) $\sum a_{r}=$ Sum of binomial coefficients is obtained by putting $x=1$ and hence

$$
\sum a_{r}=5^{n} .
$$

(c) $a_{t}=a_{n}=$ coefficient of $x^{n}={ }^{n} C_{n} 2^{n}=2^{n}$.
(d) $a_{m}=a^{-n}=$ coefficient of $x^{-n}={ }^{n} C_{n} 2^{n}=2^{n}$
(e) $a_{p}=a_{q}$, then if $p=\lambda$ then $q=-\lambda$

$$
\therefore p+q=0 \text { by (d). }
$$

3. True

$$
\sum \sum c_{i} C_{j}=\frac{1}{2}\left[\left(\sum c_{i}\right)^{2}-\sum c_{i}^{2}\right]
$$

$$
\begin{gathered}
0 \leq i<j \leq n \\
=\frac{1}{2}\left[\left(2^{n}\right)^{2}-\frac{(2 n)!}{(n!)^{2}}\right] \\
=2^{2 n-1}-\frac{(2 n)!}{2(n!)^{2}} \\
C_{0}^{2}+C_{1}^{2}+C_{2}^{2}+\ldots+C_{n}^{2}=\frac{(2 n)!}{n!n!} \\
(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+C_{3} x^{3}+\ldots \\
\left(1+\frac{1}{x}\right)^{n}=C_{0}+C_{1} \frac{1}{x}+C_{2} \frac{1}{x^{2}}+C_{3} \frac{1}{x^{3}}+\ldots
\end{gathered}
$$

Multiplying, we observe that
$C_{0}{ }^{2}+C_{1}^{2}+C_{2}^{2}+\ldots$ is the term independent of x in

$$
(1+x)^{n} \frac{(1+x)^{n}}{x^{n}} \text { or in } \frac{(1+x)^{2 n}}{x^{n}}
$$

or the coefficient of $x^{n}(1+x)^{2 n}$ which will be

$$
{ }^{2 n} C_{n}=\frac{(2 n)!}{n!n!}
$$

4. (True)
$(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{n} x^{n}$
$(x-1)^{n}=C_{0} x^{n}-C_{1} x^{n-1}+C_{2} x^{n-2}+\ldots+(-1)^{n} C_{n}$
Multiplying both sides, $(-1)^{n}\left(1-x^{2}\right)^{n}=()()$
Now $C_{0}^{2}-C_{1}^{2}+C_{2}^{2}-\ldots$ is the coefficient of x^{n} in the product in R. H. S.
Hence it is the coeff. of x^{n} in $(-1)^{n}\left(1-x^{2}\right)^{n}$ or coeff. of $\left(x^{2}\right)^{n / 2}$ in $\left(1-x^{2}\right)^{n}$ which will appear in
$T_{\frac{n}{2}+1}$
$\therefore(-1)^{n}{ }^{n} C_{n / 2}(-1)^{n / 2}\left(x^{2}\right)^{n / 2}$
Above is possible only when $n / 2$ is an integer i.e., n is even and in case n is odd, then the terms x^{n} will not occur and hence answer is zero. Also when n is even, then $(-1)^{n}=1$
$\therefore \quad(-1)^{n / 2} \cdot \frac{n!}{\frac{n}{2}!\frac{n}{2}!}$ is the required answer.
5. $\frac{1}{(1+x)(3-x)}=(1-x)^{-1}=(3-x)^{-1}$

$$
=3^{-1}(1-x)^{-1}\left(1-\frac{x}{3}\right)^{-1}
$$

$$
=\frac{1}{3}\left[1+x+x^{2}+\ldots x^{n}\right]\left[1+\frac{x^{2}}{3}+\frac{x^{2}}{3^{2}}+\ldots+\frac{x^{n-1}}{3^{n-1}}+\frac{x^{n}}{3^{n}}\right]
$$

Coefficient of $x^{n}=\frac{1}{3^{n+1}}+\frac{1}{3^{n}}+\frac{1}{3^{n-1}}+\ldots .(n+1)$ terms

$$
=\frac{1}{3^{n+1}} \frac{\left[3^{n+1}-1\right]}{3-1} \cdot=\frac{3^{n+1}-1}{2 \cdot 3^{n+1}}
$$

6. We have $C_{0}^{2}-2 C_{1}^{2}+3 C_{2}^{2}-\ldots .+(-1)^{n}(n+1) C_{n}^{2}$

$$
\begin{aligned}
& =\left[C_{0}^{2}-C_{1}^{2}+C_{2}^{2}-\ldots .+(-1)^{n} C_{n}^{2}\right]-\left[C_{1}^{2}-C_{2}^{2}+\right. \\
& \quad 3 C_{3}^{2} \ldots .+(-1)^{n} n \cdot C_{n}^{2} \\
& =(-1)^{n / 2} \cdot{ }^{n} C_{n / 2}-(-1)^{n / 2-1} \\
& \frac{1}{2} n \cdot{ }^{n} C_{n / 2}=(-1)^{n / 2}\left[1+\frac{n}{2}\right] \cdot n C_{n / 2}
\end{aligned}
$$

Therefore the value of given expression

$$
=\frac{2 \cdot \frac{n}{2}!\frac{n}{2}!}{n}\left[(-1)^{n / 2} \cdot\left(1+\frac{n}{2}\right) \frac{n}{\frac{n}{2}!\frac{n}{2}!}\right]=(-1)^{n / 2}(n+2)
$$

7. (6006)

General Term $=15 C_{r}\left(t^{2} x^{\frac{1}{5}}\right)^{15-r}\left(\frac{(1-x)^{\frac{1}{10}}}{t}\right)^{r}$
For term independent on t

$$
2(15-r)-r=0 \Rightarrow r=10 \therefore T_{11}={ }^{15} C_{10} x(1-x)
$$

Maximum value of $x(1-x)$ occur at

$$
x=\frac{1}{2}
$$

$$
\begin{aligned}
& \text { i.e., }(x(1-x))_{\max }=\frac{1}{4} \Rightarrow k={ }^{15} C_{10} \times \frac{1}{4} \\
& \Rightarrow \quad 8 k=2\left({ }^{15} C_{10}\right)=6006
\end{aligned}
$$

