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1. In the expansion of (x+a)n if the sum of odd terms 
be P and sum of even terms be Q, then

(a) P2 – Q2 = (x2 – a2)n

(b) 4 PQ = (x+a)2n – (x – a)2n
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then answer the following.
(a) The values of m and t are ...
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(c) The value of at = ...
(d) The value of am = ...
(e) If ap = aq , then p + q =
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where r = (m, m + 1,..., t)
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3. If (1+x)n = C0 + C1 x + C2 x 2 +...+ Cn xn, then 
the sum of the products of the Cs

i taken two at a 
time represented by i jC C∑∑  is equal to 0 ≤ i 
≤ j ≤ n.
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according as n is odd or even.
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6. If Cr stands for nCr, find the sum of the series 
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where n is an even positive integer, is :

7. If the maximum value of the term independent of 
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Hints and Solutions

 1. (True)         P + Q = (x + a)n

∴    (P – Q) = (x – a)n

∴   P2 – Q2 = (x2 – a2)n

     4PQ = (P + Q)2 – (P – Q)2

                  = (x + a)2n – (x – a)2n

 2. (a)  Clearly m = – n, t = n as the highest power of x will 
be n and lowest will be – n.

(b)  ra =∑ Sum of binomial coefficients is obtained by 
putting x = 1 and hence 

    5 .n
ra =∑

(c) at = an = coefficient of xn = nCn 2n = 2n.
(d) am = a–n = coefficient of x–n = nCn 2n = 2n

(e) ap = aq, then if p = l then q = −l

 ∴ p + q = 0 by (d).

 3. True
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Multiplying, we observe that
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 4. (True)

(1 + x)n = C0 + C1 x + C2 x2 +...+ Cn xn

(x – 1)n = C0 xn – C1 xn – 1+ C2 xn – 2 +...+ (– 1)nCn

Multiplying both sides, (–1)n (1 – x2)n= ( )( )

Now C0
2 – C1

2 + C2
2 – ... is the coefficient of xn in the 

product in R. H. S.

Hence it is the coeff. of xn in (–1)n (1– x2)n or coeff. of 
(x2)n/2 in (1 – x2)n which will appear in 
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∴  (– 1)n nCn/2 (– 1)n/2 (x2)n/2

Above is possible only  when n/2 is an integer i.e., n 
is even and in case n is odd, then the terms xn will not 
occur and hence answer is zero. Also when n is even, 
then (– 1)n =1
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 7. (6006)

General Term 
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For term independent on t

 2(15 – r) – r = 0  ⇒  r =10 ∴  T11 = 15C10 x (1 – x) 
Maximum value of x (1 – x)occur at 
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⇒  8 k = 2(15C10) = 6006
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